Metal in restrained means
نویسندگان
چکیده
منابع مشابه
Restrained bondage in graphs
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We define the restrained bondage number br(G) of a nonempty graph G to be the minimum cardinality among all sets of edges E′ ⊆...
متن کاملin translation: translators on their work and what it means
کتاب در باب ترجمه، اثر استر آلن و سوزان برنوفسکی منتشر شده در ماه می 2013 توسط نشریه کلمبیا است. نویسندگان در این کتاب به بررسی 18 مترجم با در نظر گرفتن نقش آثاری که این مترجمان ترجمه کرده اند میپردازند. کتاب به دو بخش تقسیم میشود: " مترجم در جهان" و " کار مترجم" این دو بخش مقالات همیشگی ترجمه و موقعیت خاص ادبیات بیگانه در جهان وسیع امروزی را مورد خطاب قرار میدهد. در این کتاب مقالات متعددی از ن...
Restrained Revision
As part of the justification of their proposed framework for iterated belief revision Darwiche and Pearl advanced a convincing argument against Boutilier’s natural revision, and provided a prototypical revision operator which fits into their scheme. We show that the Darwiche-Pearl arguments lead naturally to the acceptance of a smaller class of operators which we refer to as admissible. These a...
متن کاملTrees with Equal Restrained Domination and Total Restrained Domination Numbers
For a graph G = (V,E), a set D ⊆ V (G) is a total restrained dominating set if it is a dominating set and both 〈D〉 and 〈V (G)−D〉 do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V (G) is a restrained dominating set if it is a dominating set and 〈V (G) − D〉 does not contain an isolated vertex. Th...
متن کاملTotal restrained domination in trees
Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V − S is adjacent to a vertex in V − S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. We show that if T is a tree of order n, then γtr(T ) ≥ d(n + 2)/2e. Moreover, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Biotechnology
سال: 1996
ISSN: 1087-0156,1546-1696
DOI: 10.1038/nbt0896-947a